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1. Uncertainty Propagation using Derivative
Information



Context: Uncertainty Propagation for
Computationally Expensive Codes.

B Uncertainty analysis of model predictions: given data about uncertainty parameters
u € RP and a code that creates output from it Y = f(U) characterizey.

O In this work we are interested in the propagation problem: Given a probability structure for
u € RP find the distribution of ¢y = f(u)

O If f is expensive to compute, we cannot expect to compute a statistic of y very accurately from
direct simulations alone (and there is also curse of dimensionality;” exponential growth of effort
with dimension”).

O How do | propagate the model if the code is very computationally intensive?



Can Derivative Information Help in Accelerating
Uncertainty Propagation?

Adjoint differentiation adds a lot more information per unit of function evaluation cost (theory:
at least p/5 more, where p is the dimension of the uncertainty space).

Q: Can | use derivative information in uncertainty propagation to accelerate its precision per unit
of computing time?

Working hypothesis (and answer) : yes.

In nuclear engineering, the answer tends to be either A) Use Monte Carlo or B) Linearized
Functions + Adjoint Information.

Q: How do | use gradient information without introducing the bias from linearization?
By using surrogates—surface response — output collocation built with derivative information.



New research direction: Statistics with derivative
information?

= We create surrogates out of expensive codes to carry out uncertainty propagation
(truly, an approximation step)

y=rf(u)=y=f(u)

= |f we do complete uncertainty analysis, we must create an error model for the
surrogate itself.

flu)=f(u)~ ..

= Not unlike other statistical activities, but one big difference with codes versus
physical experiments: | can compute derivatives

df
du,
= So | can use derivatives in the creation of the statistical models, which is a fairly
distinct endeavor in statistics (not unheard of but fairly rare).

= Therefore some of the typical statistical endeavors (choosing predictors, kernels
for Kriging, designs, etc) need to then be studied for the case where derivative
information is also used.



How to obtain Derivatives? Automatic Differentiation, AD

B AD is based on the fact that any program can be viewed as a finite sequence of elementary operations,
the derivatives of which are known. A program P implementing the function J can be parsed into a

sequence of elementary steps:

P J=fi(fia (- S(@))
The task of AD is to assemble a new program P'to compute the derivative. In forward mode:
_ Jfy .afk—l Jf
i1t oo J

B In the forward (or direct) mode, the derivative is assembled by the chain rule following computational
flow from an input of interest to all outputs. We are more interested in the reverse (or adjoint) mode

that follows the reversed version of the computational flow from an output to all inputs:
T T T
) =(%j (2] .| L
dor Jf; I 1
In adjoint mode, the complete gradient can be computed in a single run of P', as opposed to multiple runs

required by the direct mode.
B Theory: Cost of adjoint < 5* Cost of Computing J. For some examples: (Lockwood, Mavriplis, et al.) <.

P: (V,J),

01*Cost of Computing J.



How (and why) does AD work, conceptually?

= Build a computational graph (example from f(x) = (x1x2sinxs + €% /x3.
Nocedal and Wright)
= Attach to the node the value of the variable X4 = X % X2,
and to the edge the value of “local partial .
. X5 = SIIl X3,
derivative.
Xg = e,

= Traverse it left to right (forward sensitivity) or
right to left (adjoint sensitivity) and multiply X7 = X4 * Xs,

the edge weights you encounter. Xg = Xg + X7,

= Result: the forward or adjoint sensitivity. Xo = X3/X3

P(9.8)=2/T
/

+
1

2
pG3=0 7=z 2 pE =1 TN

4+2€2/1t

p(9.3)=(84e?)m?




New research in the chain rule?

= The computational consequences of implementing adjoints efficiently are
enormous.

= Costs of less than 0.01 of forward simulation have been reported for adjoints of
certain physical phenomena (Lockwood, Mavriplis et al, 2012.).
— How do we deal with storage complexity in adjoint calculation?
— Should we do some compression, and what are best tools?
— How do we parallelize and load balance multiphysics adjoints.

=  Chain rule: Still a very rich algorithmic research area.



2. Polynomial regression with derivative
information: PRD.



Uncertainty quantification, subject models
B Model I. Matlab prototype code: a steady-state 3-dimensional
finite-volume model of the reactor core, taking into account heat

#42

transport and neutronic diffusion. Parameters with uncertainty are

the material properties: heat conductivity, specific coolant heat,
heat transfer coefficient, and neutronic parameters: fission,
scattering, and absorbtion-removal cross-sections. Chemical
non-homogenuity between fuel pins can be taken into account.

Available experimental data is parameterized by 12-66 quantifiers.

STEAM GENERATOR

B Model Il. MATWS, a functional subset of an industrial complexity
code SAS4A/SASSYS-1: point kinetics module with a representation

of heat removal system. >10,000 lines of Fortran 77, sparsely e
Z5%
documented. \ 4
. L . : . . | STRUCTURE
MATWS was used, in combination with a simulation tool Goldsim, -z,
UPPER UIS-CP
to model nuclear reactor accident scenarios. The typical analysis e
Z
task is to find out if the uncertainty resulting from the error in z‘_ N 2,
. . . .. . . . . . Q 3
estimation of neutronic reactivity feedback coefficients is sufficiently "~ z,
%
small for confidence in safe reactor temperatures. The uncertainty is \com rool N ier pLenom J

described by 4-10 parameters.
o



Representing Uncertainty

B We use a hierarchical structure. Given a generic model with uncertainty

F(T,R)=0
R=R(T)-(1+AR(T,x)) J=J(T)
with model state T=(T1>T29--->Tn) R=(R1,R2,...,RN)

intermediate parameters and inputs

thatinclude errors AR = (AR}, AR,,...,ARy)

An output of interest is expressed by the merit function J(T)
The uncertainty is described by a set of stochastic quantifiers 00 = (01,0550 )
B We redefine the output as a function of uncertainty quantifiers, S(OC) = J(T)

and seek to approximate the unknown function 3(c)



Polynomial Regression with Derivatives, PRD

B We approximate the unknown response function by polynomial regression based on a small set of model
evaluations. Both merit function outputs and merit function derivatives with respect to uncertainty

guantifiers are used as fitting conditions.

B PRD procedure:
- choose a basis of multivariate polynomials {‘I’q(a)}
the unknown function is then approximated by an expansion 3(¢) = Zq x, 'Y, ()
) o ) P A i
choose training set {4} A, =(04,065,...,0)
- evaluate the model and its derivatives for each point in the training set, and enforce the collocation
conditions on the training set.

S(af)zquqwq(a");%S(ai)zquq%\yq(a"),j:1,2,...d;i:1,2,...N
J J



Polynomial Regression with Derivatives, PRD

B PRD procedure, regression/
collocation* equations:

B Note: the only interaction with the
computationally expensive model

is on the right side!

B The polynomial regression
approach without derivative
information would provide (n+1)
times LESS rows.

B Choose the polynomial basis
wisely, solve with least squares.

B The overall computational savings
depend on how cheaply the
derivatives can be computed

Yi(4)  Y(4)
a¥\(4)  d¥,(4)
doy doy
a¥\(4)  d¥(4)
do, do,
ati(4) d¥,(4)
do,, do,,
Vi(4d)  Yh(4)
d¥|(4) d¥y(4)
doy do
() Faldy)

¥, (Ay)  d¥y(Ay)

do

m

do,,

3(4)
d3(4)
do
d3(4,)
do,

d3(4)
do,,

3(4)

d3(4,)
doy

3(Ay)

d3(Ay)
do




Why am | obsessed with really low sample size ?

=  We work in project “Simulation-Based High-Efficiency Advanced Reactor
Prototyping -- SHARP”;

=  Some of the codes that need to be validated run for a few weeks on a
supercomputer for one sample.

= So we must have methods that give *some* idea of uncertainty for 5-50 samples
even for large-ish dimensional uncertainty spaces.

IMA 2011 UQ Workshop
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PRD UQ, tests on subject models 1.

B Model I, Matlab prototype code. Output of interest: maximal fuel centerline temperature.

B We show performance of a version with 12 (most important) uncertainty quantifiers. Performance of
PRD approximation with full and truncated basis is compared against random sampling approach (100
samples)*:

Output range, K 2237.8 2227 .4 2237.8 2237.5

2460.5 2450.0 2460.5 2459.6
Error st. 2.99 0.01 0.29
deviation

* derivative evaluations
required ~150% overhead



PRD, basis truncation

M Issue: we would like to use high-order polynomials to represent non-linear relationships in the model.
But, even with the use of derivative information, the required size of the training set grows rapidly (curse
of dimensionality in spectral space)

B We use a heuristic: we rank uncertainty quantifiers by importance (a form of sensitivity analysis is
already available, for free!) and use an incomplete basis, i.e. polynomials of high degree only in variables
of high importance. This allows the use of some polynomials of high degree (maybe up to 57?)

B Several versions of the heuristic are available, we choose to fit a given computational budget on the
evaluations of the model to form a training set.

B In our first experiments, we use either a complete basis of order up to 3, or its truncated version allowing
the size of training set to be within 10-50 evaluations.

B An even better scheme - adaptive basis truncation based on stepwise fitting is developed later,
simultaneously with conditions for better algebraic form of multivariate basis,



Uncertainty quantification, tests on subject models

= Model Il, MATWS, subset of SAS4A/SASSYS-1. We repeat the analysis of effects of uncertainty in an
accident scenario modeled by MATWS + GoldSim. The task is to estimate statistical distribution of peak
fuel temperature.

= We reproduce the distribution of the outputs correctly*;
regression constructed on 50 model

—— Full model distribution

evaluations thus replaces analysis , oL
Regression model distribution

with 1,000 model runs. We show 95% confidence interval
cumulative distribution of the 1k AR
peak fuel temperature. ﬂ

08F ¢

7

= Note that the PRD approximation gl
is almost entirely within the 95%

confidence interval of the 04r
e
sampling-based results. 02k &
/-"fﬁ
= Surface response, error model %50 860 870 830 890 900 910 920 930

in progress (though control variate done)



PRD, selection of better basis

We inherited the use of Hermite multivariate polynomials as basis from a related method: Stochastic
Finite Elements expansion.

While performance of PRD so far is acceptable, Hermite basis may not be a good choice for constructing
a regression matrix with derivative information; it causes poor condition number of linear equations (of
the Fischer matrix).

Hermite polynomials are generated by orthogonalization process, to be orthogonal (in probability
measure p; Gaussian measure is the specific choice):

J ¥ (¥, (A)p(A)dd =5,

Q

We formulate new orthogonality conditions:

J (‘%-(A)% B ]p(A)dA -5,

0 i o

and ask the question: how does a good basis with respect to this inner product looks like?

Surprise: We cannot construct tensor product bases of arbitrary order. We give very tight sufficient
conditions and use them. (Li & al., JUQ, in press)



PRD, selection of better basis

B Model |, Matlab prototype code.
We compare the setup of PRD
method using Hermite polynomial
basis and the improved basis. We
observe the improvement in the 10°
distribution of singular values of the
collocation matrix. l.v -

Legendre
Hermite
Ne\A/

B We compare numerical - )
conditioning for Hermite, Legendre —_—
polynomials, and the basis based on 10
new orthogonality conditions.

B We have 10710 improvement in the 107"
condition number of the Fischer
matrix *!!! In principle this results
in much more robustness of the
matrix.

B This will offer us substantial 0 100 200 300 200 500
flexibility in creating the PRD
model.



PRD, adaptive (stepwise fitting) basis truncation

B We use a stepwise fitting procedure (based on F-test):
1. Create the PRD model as an expansion in the starting set of polynomials
2. Add one (estimated as most likely) polynomial to the set. An expansion term currently not in the model is
added if, out of all candidates, it has the largest likelihood that it would have non-negligible coefficient if
added to model.
3. Remove one (estimated as least likely) polynomial from the set. An expansion term in the model is
removed if it has the highest likelihood to have negligible coefficient.
B |tis possible to truncate the model starting with a full basis set (of fixed maximal polynomial order) or
from an empty basis set (all polynomials of fixed maximal order are candidates to be added).
2 T T o' T
— (O] tmncated w:th nothlng inthe mmal model ! 1 —#«— (0) truncated with nothlng in the mmal model
181 (H)without basis truncation T (H)without basis truncation
(H) truncated with nothing in the initial model (H) truncated with nothing in the initial model
16 (H) truncated with everything in the initial mode] | o L (H) truncated with everything in the initial mode
14} o<
12 e P
r 107'F
08f W -
¢ ¥
06 i PP
10°F
04 /
02 2 - H_'*}.
0 " : ; SO I ST S S T e J“H“"‘ 7 «10'3 1 1 1 1 1 1 1 1
2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18
(Hermite basis error on 20 samples) (Orthogonal basis error on 20 samples, log_10 plot)
B Orthogonal basis created starting “with nothing” in the expansion results in precision of up to 0.01

degree K (compare with errors of >10 K by linear model).

A



3. Gaussian Processes for Quantifying
Uncertainty Propagation Error.




PRD: need for enhancement, need for error model

B PRD approach has been shown to be a powerful tool, (precision of <0.1% ? For a nonlinear 12-
dimensional model? Based on a training set of size 107?)

B But it does not address the bias introduced and the clearly when you fit a model PRD, which one knows is
not exactly correct. Also, the correlation model is clearly incorrect (error in derivatives uncorrelated with
errors in function evaluation?)

B We thus need to improve uncertainty quantification on the uncertainty propagation process.

B We start from good surrogate model —as we demonstrated -- which we enhance with a Gaussian Process
model and fit it with max likelihood. If the covariance is smooth enough, | have a consistent model for
function and gradient error.

B Then, we use the posterior prediction (kriging) at the test points



Gaussian process regression (kriging): Setup

() = m()

= Gaussian process (GP): f(z) ~ N (m(x), k(x,z")) E{f(z)}
Cov(f(z)) = k(z, ")

= Data (observations)/predictions: ¥y = f(z) +¢ / ys« = f(xx)

= GP joint distribution: [ Y ] NN([ m(X) ] [ K+ ‘ K2 ])
U m(X,) |’ Ky | Ko

= Predictive distribution: v X, X,y =m(X,) + Koy (Kip +3) 7 (y — m(X))
Cov(y.|X,X.,y) = Koz — Koy (K11 + %) Ky

3

prior

-3 s s s
=1 -0.5 0 0.5 1 [ ) ) 5 -0.5 0 0.5 1
Argonne National Laboratory ---- Mathematics and Computer Science Division

24
4/2/12



Gaussian Processes with Derivatives,

B We assume that the response of the system can be represented as a Gaussian process with explicit mean
function and specified covariance function governed by a set of parameters (hyperparameters):

18(2).3(x,).... 8000} ~ N(RX)a. K (X, X:0): K (x,.x,) = k(x,— x,)
B Covariance matrix with derivative information is given by a block form:
cov[J,J] cov[J,VJ]
cov[VJ,J] cov[VJ,VJ]
B Regression parameters are computed as a = (‘PTK_l‘P)‘PTK_lY

or a=(HTKH) -HTK™ .Y, with g Y vV
V¥ VJ

K=COV[Y,Y]:(

B The mean and variance of the model are now predicted as
ulJ1=(cov(¥, .Y, ;) W)-K'Y+R(x)a
J=cov(s,8)—(covx vy W)k I reo Tk B R
var[J]= cov(S,8) —(cov(¥,., ¥, ) o (x) (x)

B We now need to assume a functional form of the covariance function which must be positive definite
(not a trivial requirement: truncation of a pd function is not pd).

-5\
cov(S;,S;0)=exp| - 0 /
i

B ,For example: squared exponential:

A



How to compute the covariance of the derivative
information

= First, the covariance function must support differentiable realizations. We will
consider here only stationary covariance functions.

k(x,x")=k(x—x")
= The covariance function (of a stationary process) must be differentiable at 0 twice
as many times as the realizations.

= E.g: The process is twice differentiable everywhere = the covariance function
must be four times differentiable at 0.

= For first-order derivative:

dy 0 dy dy’ 9’
’ ') = k ’ ' PN = —k ’ ' ’ = k ’ ' .
cov(y y ) (x,x") COV[ o, y ] o, (x,x" COV( o, ax;j 9.2 (x,x")

IMA 2011 UQ Workshop
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Gaussian Processes approach, Parameter Fitting

B With the functional form of covariance specified, the hyperparameters @ are determined by maximizing
the marginal likelihood function for the data. The logarithm of the likelihood is given by:

1 1

log(p(J|S;6) = - YKy + > Y'K'HH"K'HY'HTKY - % log K| —%1og(271')

B The optimization is carried out using standard tools (L-BFGS + active set algorithm).




How do | choose the covariance function?

¢ Squared Exponential:

o Matern Function v =

.

Wl

g /
Ty — Xy

8;

/
Z

r; — X

0;

ki(zs — z)) = (1 ++/3

) V3
€
€

[N]fe)]

¢ Matern Function v =

. /
Xy— 2y

8,

T; — T

0;

T; — T}
0;

ki(xi—:sé):<1+\/5 +g

= Covariance functions must be “positive definite”.

= The square exponential is one of the most used in machine learning, but also
assumes the underlying process is very smooth, which may make the error
estimate completely unreliable.

= The Matern function is one of the most robust, for the derivative-free case and
it has controllable smoothness.

IMA 2011 UQ Workshop
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How do | choose the covariance function Il.

¢ Cubic Spline 1:

115|255 *r30]z2t foro< zoo) <02
k(s — 2}) = 1.25(1—‘ efi)B z‘<1
0 for m"’ Zil > 1
¢ Cubic Spline 2:
= AL AL P L= AP
ki(e: — x;) = 2(1— "”igfi)g for 0.5 < 2525 < 1
0 for mz L5 05 1

All the previous kernel functions result in DENSE matrices which may be a problem
if I need to sample at many points.

Cubic spline functions are examples of compact Kernels, with sparse covariance

matrices that can be more easy to manipulate (e.g Cholesky, which is needed in max
likelihood and sampling, may be doable)..

IMA 2011 UQ Workshop
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3.2 NUMERICAL RESULTS FOR
GEUK

11111111111111111

///////



Our working intuition re GEUK

H1: GEUK results in less error compared with SL_2S regression (GP with iid noise).

H2: GEUK results in less error compared with universal Kriging without derivative
information. Idea: one gradient evaluation brings d/5 more information.

H3: GEUK results in less error for the same number of sample values when
compared with ordinary Kriging.

H4. GEUK approximates well the statistics of output, and its predicted covariance
is a good or conservative estimate of the error}.

H5. Covariance matters. It will affect the predictions and usability of the model.
Idea: it is best to assume as little differentiability as one can get by with,
particularly in the dense limit of samples.

Approach: calibrate with N samples, report error with 500. For full details, see
Lockwood and Anitescu 2012.

IMA 2011 UQ Workshop
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H1: Kriging versus Regression

Table 3.9: MATWS — cubic spline 2 — comparison of error for Kriging and regression models

Sample Points | Kriging RMS | Regression RMS | Kriging Max | Regression Max
- <p:2> #0453 152004 il 66082 Table 3.3: MATLAB — square exponential — Comparison of error for Kriging and regression models
6 (p=2) 0.5260 3.2833 2.2040 14.0380 Data Set | Kriging RMS | Regression RMS | Kriging Max | Regression Max
8 (p=3,trunc) 0.1841 0.5695 1.1980 3.1272 1 0.11554 047118 0.70207 2.194
16 0.0766 0.427 0.747 2.404 2 0.58351 0.76058 2.5731 3.2553
24 0.0887 0.405 0.910 1.877 3 0.77163 1.1982 3.2202 4.8668
39 0.0995 0.309 1.118 1.959 1 0.77163 1.289 3.2201 5.0067
40 0.0517 0.295 0.437 2.112
50 0.0508 0.251 0.386 1.476
100 0.0337 0.181 0.0998 1.068

MB-3'4 Deg — 8 pts — Square EX
MS-3"4 Deg — 16 pts — Cubic Spline 2 &=<P g P

25 T T T T T T

25 T T T T T T —®— Regression Error (sorted)
—* ~Kriging Error

—=— Regression Error (sorted) ~*=Error Bound (99% CI)
—* ~Kriging Error
~*=Error Bound (99% CI)

Error

2 T ot Lo el
g5 i R S
600 700

Sample Index

Sample Index

Conclusion H1: GEUK better RMSE — modeling correlation matters

IMA 2011 UQ Workshop
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H2: Effect of gradient information
MATLAB MATWS

1.00E+002

1.00E+002
% 1.00E+001
<% - Gradient Enhanced
] Kriging Model
L% -~ Kriging Model _
% 1.00E+000 L|=_I 1.00E+000 & UK
= - GEUK
1.00E-001 —
TR0E0H 0 50 100 150 200 250 300 350
Number of Observations
1.00E+002 1.00E.002
0 50 100 150 200 250
Number of Observations
é 1.00E+001 MS'znd Deg_ N ptS— CUbiC Spline 2
E
s e Conclusion H2: gradient matters but
e -~ Kriging Model . .
= — we expect it will be even more
spectacular for large dimensions.

’ : o 50 100 150 200 250 300 350 400 450 IVIB_Ord Deg _ N pts _ Cubic Spline 2

Number of Observations

IMA 2011 UQ Workshop
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N
H3: Using a mean function versus ordinary kriging

1.00E+002
1.00E+001 -

<

9

<

E

>

oS

o

o

= 1.00E+000 - P=0
w—

o —
2 -~ P=1
= - pP=2
Ll

)

=

o

1.00E 001
1.00E-002 - T d T T d T
(o} 10 20 30 40 50 GO0 70

Number of Observations

MB-M deg — N pts — Cubic Spline 2

Conclusion H3: Modeling the mean may matter and it
definitely does not hurt (it does not help in MS)

IMA 2011 UQ Workshop
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H4: Kriging gives a good approximation of the error

Table 3.7: MATLAB - comparison of data distribution between covariance functions
Covariance Function | +10 | +20 | +30
Cubic Spline 1 0.290 | 0.592 | 0.758
Cubic Spline 2 0.776 | 0.878 | 0.930
Squared Exponential | 0.690 | 0.882 | 0.95
Matern-3/2 0.676 | 0.874 | 0.932
Matern-5/2 0.704 | 0.884 | 0.928

With Decorrelation _ ,
Without Decorrelation

Table 3.16: MATWS Matem-?’/ 2 — 7 scores for Kriging Prediction Table 3.12: MATWS — cubic spline 2 — statistics for kriging prediction

Data Set | KS metric | £l0* | £20" | £30" DataSet | £10 | 290 | %30
4 (p=2) 0.5580 | 0.0030 | 0.0090 | 0.0150 4 (p=2) 0.847 | 0.977 | 0.999
6 (p=2) | 0.2782 | 0.2510 | 0.4780 | 0.6030 6 (p=2) | 0.513 | 0.964 | 1.000
8 0.1557 | 0.4640 | 0.7070 | 0.8130 8<P=fétrun® gggg 8323 }838
16 0.0645 | 0.6150 | 0.8810 | 0.9510 o1 0233 | 0857 | 0971
24 0.0297 | 0.6890 | 0.9450 | 0.9840 29 0525 | 0.817 | 0.042
32 0.0770 | 0.8200 | 0.9690 | 0.9840 40 0.475 | 0.800 | 0.937
40 0.0269 | 0.7150 | 0.9590 | 0.9900 50 0.366 | 0.685 | 0.870
50 0.0601 | 0.7890 | 0.9870 | 1.0000 100 0.221 | 0.424 | 0.600

Conclusion H4: We have good approximation at low sample size, and,
with decorrelation, good approximation at larger sample size for some
functions. (Square Exponential: not PD at Machine Precision)

IMA 2011 UQ Workshop
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H5: The choice of covariance function matters

Table 3.10: MATWS — comparison of covariance functions for 8 pt GEUK model

Covariance Function | RMS Error | Max Error
Cubic Spline 1 0.2083 1.3567
Cubic Spline 2 0.1841 1.1980

Squared Exponential 0.1245 1.0125

Matern-3/2 0.1704 1.0645
Matern-5/2 0.1530 1.0566

Table 3.11: MATWS — comparison of covariance functions for 50 pt GEUK model

Covariance Function | RMS Error | Max Error
Cubic Spline 1 0.0567 0.3963
Cubic Spline 2 0.0528 0.4551

Squared Exponential 0.1487 2.0268

Matern-3/2 0.0398 0.2552
Matern-5/2 0.0749 0.7991

Conclusion for H5 (see also previous slide) — it does. As in the derivative-free
case, Matern 3/2 seems a “safe” choice; squared exponential is all over the
place, and compact kernel does not do a good job on the tails at larger N.

IMA 2011 UQ Workshop
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Sampling the surrogate model when propagation
uncertainty is included

=  For uncertainty parameter [{ ,the error propagation is deterministic
conditional on u

F)s £ f (g ) (gt ttyy) ~ 8 f (1), f ) f (1))

=  When using GP to model surrogate error, we have that

F()s ) f(uy ) (1t 1ty ..oy ) ~ N(m (U)K (U))

IMA 2011 UQ Workshop
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v

Quantile Estimation

= This is a critical statistic in nuclear engineering.
= Particularly, the 95% statistics with 95 % confidence.

=  “Conservative Estimate” using the Uniform distribution and properties of order

statistics and uniform distributions quantiles.
Table 4.1: MATLAB — cubic spline 2 — quantile calculation for MATLAB data

Sample Points

Regression Order

Kriging Estimate

Regression Estimate

Training Estimate

4
6
8

2
2
3

2446.6
2448.2
2449.1

2447.2
2447.5
24484

2323.8
2335.2
2360.4

IMA 2011 UQ Workshop

Actual Value = 2456.0

Table 4.2: MATWS — cubic spline 2 — quantile calculation for MATWS data

Sample Points

4 (p=2)
6 (p=2)
8
16
24
32
40
50

Kriging Estimate | Regression Estimate | Training Estimate
865.73 864.78 863.55
865.86 871.15 863.55
866.08 866.60 863.46
865.89 866.51 865.45
865.83 866.49 865.56
865.87 866.32 865.76
865.82 866.37 865.86
865.83 866.42 865.86

Actual Value = 866.16
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Estimating Quantiles Using Asymptotic tests

Table 4.5: Quantile — Matern-3/2 — Example results for Kriging quantile estimate with confidence interval

DATA Training Points | Confidence(1-a) | Lower Bound | Upper Bound | Median
MATWS 8 0.95 866.17 866.45 866.28
MATWS 8 0.99 866.17 866.45 866.28
MATWS 50 0.95 866.07 866.17 866.12
MATLAB 8 0.95 2454.3 2455.6 2445.0
MATLAB 8 0.99 2454.2 2.455.8 2455.0

MATWS: 8 samples and 50 samples

! ' ' ! T ' T
. i
ol = Quantile Diswribution | 09+ i i T Quantile Distribution
—--Acw Quantile : : === Actual Quantile
08 —TaRa 1 08 i o 05kl
| ]
071 - 0.7 4 ! —
I ]
| ]
06 =1 06 | Y -
| 1
8 oS 1 & o5 ' ] -
w | i
| I
04 1 04r 1 1 =
: | I
| I
0.2+ -1 0.2+ ' I -
| i
I
0.1+ 7 0.1+ | : 7
L I | 1
O A 1 1 1 1 1 1 1 0 1 | | 1 1 |
866 866.1 8662 866.3 8664 866.5 866.6 866.7 866 86605 866.1 866.15 866.2 866.2°

Quantile Estimate CQuantike Estimate
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GPs with derivatives: Research Issues

= |f | use GPs to approximate a deterministic response under what conditions can
the posterior covariance be used as an error estimate?

= What theoretical considerations should guide the choice of the covariance kernel?

= (Can the distribution of the parameter induce better choices of the covariance
kernel?

= How do we deal with the multiple local minima we see in the likelihood?
= What are good optimal design formulations and their solutions?

IMA 2011 UQ Workshop
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4 SCALABLE GP ANALYSIS
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Examples

Source: http://www.ccs.ornl.gov/
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Tasks and challenges

Sampling

Maximum likelihood

Interpolation/Kriging (solving linear system with K)
Regression/Classification (solving linear systems with K)

S;0)= —%YTK‘IY + %YTK‘IH(HTK‘IH)‘IHTKY — %log|K| — %log@n)

log(p(J

K=A"A, £~N(0,1), y=M+A~N(m,K)

A lot of the basic tasks require matrix computations w.r.t. the covariance matrix K.

But for 1B data points, you need 8*10718 bytes to store = 8 EXABYTES, so cannot
store K.

How do you do compute log-det and A without storing the covariance matrix? And
Hopefully in O(number data points) operaations?
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Maximum Likelihood Estimation (MLE)

= A family of covariance functions parameterized by 6: ¢(x; )
=  Maximize the log-likelihood to estimate O:

max L(6) = 1og{(2n)-’“2 (detK) 2 exp(=y"K 'y/ 2)}

1 -, 1 n
=——v K y——log(detK)-—log2m
2y y > g( ) 5 g

= First order optimality: (also known as score equations)

| Q- a1 _
VK@ K0K 1y—5tr[K '(0,K)]=0
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Maximum Likelihood Estimation (MLE)

The log-det term poses a significant challenge for large-scale computations
max —lyTK'ly—llog(detK)—zlog 2r
0 2 2 2

= Cholesky of K: Prohibitively expensive!
= |og(det K) = tr(log K): Need some matrix function methods to handle the log
= No existing method to evaluate the log-det term in sufficient accuracy
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Sample Average Approximation of Maximum
Likelihood Estimation (MLE)

We consider approximately solving the first order optimality instead:

1, N U
EyTK '(9,K)K 1y—§tr[K 1(a].K)]

R SR U (Y _
="K @,K)K y—ﬁgu. [K7(0,K)|u; =0

l

= A randomized trace estimator tr(A) = E[uTAu]
— U hasi.i.d. entries taking £1 with equal probability

= As N tends to infinity, the solution approaches the true estimate

= The variance introduced in approximating the trace is comparable with the
variance of the sampley
— So the approximation does not lose too much accuracy

= Numerically, one must solve linear systems with O(N) right-hand sides.
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Stochastic Approximation of Trace

=  When entries of u are i.i.d. with mean zero and covariance |

tr(A)=E, [uTAu]

= The estimator has a variance
T 4 2 1 2
var {u" Au} = 3 (E[u]-1) 4] +§E(Aij +A,)
i i=]
= |f each entry of u takes £1 with equal probability, the variance is the smallest

Var{uTAu} = %E(Aij +A,)

i=j
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Convergence of Stochastic Programming - SAA

" let 6 : truth

A

0 : sol of %yTK‘l(ajK)K‘ly—%tr[K'l(ajK)] =0

N . _1 T -1 -1 1 < T[ -1 _
6" : sol of F—Ey K™(9,K)K y—ﬁ;u. [K (ajK)]u,._o

= First result:

[V "2@" -0) —2— standard normal, V" =[J¥T"=V[J"]"

where . A
J"=VF@") and =" =cov{F(0")}

= Note: 2N decreases in O(N1)
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Simu

lation: We scale

= Truth ©=[7, 10], Maternv=1.5

11

0,400 L e ]
9
s

e1 7~~~I fffff T x = -
° 10° 10°

matrix dimension n

time (seconds)

512x512 grid ]
2.74 hours 1024x1024 grid| |
func eval: 8 11.7 hours
func eval: 8
. 256x256 grid
128x128 grid 1.1 hours
6.62 mins func eval: 8
func eval: 7|
64x64 grid
2.56 mins
func eval: 7
4 6
10 10

matrix dimension n
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“Optimal” Convergence

" let 6 : truth

A

0 : sol of %yTK‘l(ajK)K‘ly—%tr[K'l(ajK)] =0

l

N . _1 T -1 -1 1 < T[ -1 _
6" : sol of F—Ey K™(9,K)K y—ﬁ;u. [K (ajK)]u,._o

=  Second result:

C @ -0) —2— standard normal, C=A"BA™

where 1
—-A =1, Fisher matrix and B=1+ m]

J<]. [cond(K)+1]°
= Note:Jhasabound cond(K) ,soCconvergestol*in O(N?)if
condition number of K is bounded.
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LINEAR ALGEBRA CHALLENGES: PRECONDITIONING
AND MATRIX VECTOR MULTIPLICATIONS

We reduced max likelihood calculations to solving linear systems with K.

We next focus on the linear algebra:

=  Preconditioning K

= Matrix-vector multiplication with K

= Solving linear system w.r.t. K with multiple right-hand sides
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Covariance Model

=  Matern covariance function

1 4 x

¢(x)=2H—F(v)( 2W’)V KV( 2vr) where r = —L

— v: Example values 0.5, 1, 1.5, 2
— 0O: Scale parameters to estimate
— K, is the modified Bessel function of the second kind of order v

=  Commonly used in spatial/temporal data modeling.

= The parameter v is used to model the data with a certain level of smoothness.
=  When v -> oo, the kernel is the Gaussian kernel.

=  Spectral density

d
f(w)oc(zv+p2)—(v+d/2) where p= \/E(ijj)z
j=1
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Why the Matern Kernel?

= In machine learning, people tend to use the square exponential kernel a lot.

= This assumes that all realizations are infinitely smooth, a fact rarely supported by
data, especially high resolution data.

= The Matern Kernel allows one to adjust smoothness.

= The resulting covariance matrix is dense, compared to compact Kernels, but the
likelihood surface is much smoother.

1500
1000

500

-500

-1000-L
14

10

(a) Compact kernel. (b) Matern kernel.

IMA 2011 UQ Workshop
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Condition Number

K is increasingly ill-conditioned.

tO -1 t—n+2 t—n+1-
tl to t_l t—n+2
t1 to
tn—2 -1
tn-1 tpn—2 - i1 to |

Co

C1

= More can be done by considering filtering

Cn—1

Co

C1

If the grid is in a fixed, finite domain C RY, then cond(K) = O(n2v/d+1)

Cn—1

Co

C2

C1

On regular grid, K is (multi-level) Toeplitz, hence a circulant preconditioner applies

C1

C2

Cn—1

Co
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Condition Number

Filtering (1D): if f(w)w? bounded away from 0 and oo as w -> oo
Let0<xp <X .. X, ST, dj=%—X 4,

Y =[Z(x)=Z(x )/ Jd;, KV =cov{Y, 7"}

Then KW has a bounded condition number independent of n

Filtering (1D): if f(w)w*bounded away from 0 and oo as w -> oo

@ _ Z(xj+1)—Z(xj) ~ Z(xj)—Z(xj_l)
"o 2d,\d, +d;  2d[d,, +d,

Jj+l

KP(j.D=cov{Y?. 1>}

Then K@ has a bounded condition number independent of n
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Condition Number

= Filtering (high dimension, regular grid): if f(w) is asymptotically (1+|w])*

d
AZ(x;)= EZ(xj —0e,)=2Z(x;)+Z(x; +0e,)

p=1

K'™(j,l) = cov{A™Z(x;),A"Z(x,)}

» Then K[ has a bounded condition number independent of n

= Use thefilter as a preconditioner

[ e T ] (]

In 2D, L is the 5-point stencil matrix with rows w.r.t. the grid boundary removed.

= Similarly for the filters in the preceding slide
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Condition Number

» Effect of filtering (K" can be further preconditioned by circulant preconditioner)

8

10

—
o
)

condition number
o

-©-K
—+—K preconditioned
—e—Kl1]

-kl preconditioned

10°

10" 10° 10
matrix dimension n

6
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Block CG

= Preconditioned Conjugate Gradient (M is preconditioner)

Ax=D>

Xjn =X;+A;P;

’}+1 =7, _-(Z’Iquj
pj+1 ]+1 + ﬁ p]
where

a;=r, "M, /pJApJ

b =r. Mr, /rTMr.

j+l j+l

AX =B (block version)

X,=X,+Pq,
R. =R.—AP.a.
j+1 (MR]+1 +Pﬁ ))/]+1
where
a,=(P/AP)"'y; (R MR))
B;=v;'(R_MR))"(R,,MR.,)

j+l
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Block CG

= (G, block CG, and the preconditioned versions using circulant preconditioner

5

10
1 00 N M‘&.,Nw oy
T
-
S
(V)]
©
107 —CG
—PCG
—BCG
—BPCG
107"° ‘ ‘ ‘ ‘
0 100 200 300 400

iteration

500
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Experimental Results

= Combined effect of circulant preconditioning and filtering

10°

—
o
o

residual

—
o
&

-10

10

—k
— K preconditioned
—M

—K! preconditioned||

100

200 300
iteration

400
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MATRIX-VECTOR
MULTIPLICATIONS
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Matrix-Vector Multiplication

Matrix-vector multiplication s = Kq
= A straightforward implementation requires O(n?) calculations because K is full.
= We use a tree code to perform the calculation in O(n log n) time.

General idea:
= separate the set of points into clusters.
= For each entry of s, separate the summation into cluster sums:

S, =qu¢(xl. —X;)= Es(xl.,C), where s(x,,C) = 2 q,6(x; = ;)

y,€C

= |fx isclose to C, s(x;,C) is computed in a brute-force manner

= The gain by using tree code is when x; is far away from C, s(x,,C) can be
approximated by expansion of ¢, such that calculations are reduced.
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Matrix-Vector Multiplication

level 0 level 1 level 2 level 3

Tree code:

= Recursively partition the point set

= Start from the top of hierarchy

= [f x, is not sufficiently far away the cluster center, visit the four child clusters
If x; is sufficiently far away from a cluster, use expansion to compute s(x;,C)
= |f bottom of hierarchy is reached, compute s(x,C) in a brute-force manner
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Matrix-Vector Multiplication

Taylor expansion around center of C, y_.:

$(6.C) =Y q,6(x-y))

D
1
~ E q] E FD§¢(xl7yC)(y] _yC)k

y;€C  likli=0 "™~

=S Loy | S 4,0, -

o K v
Coefficients, need a Moments, for all i
smart way to evaluate compute only once

Matern kernel: A recurrence relation can be built to compute the coefficients for all k
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Matrix-Vector Multiplication

Y1 = exp(—V/3r) /7, 1o = exp(—/3r), Y3 = V/3rexp(—v/3r). Let by, cx , dy, be their

Taylor coefficients, respectively:

1 1
b = EDkwl(wwyc) Ck = EDde(xmyc)a dis = —DZ¢3($i,yc)-

We have
ar = cg + dg, (4.4)

and the following recurrence formulas:

=1

2
1
bp = —— 2 k L Zb e kll —1 " 2.
: L1L2||k;|r2< el = Z i) (@i = Yi)br—e, — (1]l = 1) D Ljciybw )

+ L0 kHT2 (Z Ly(z)( yz Ck—e; — Cl— 2ez)> ) (4.5)
2
3 1

7

=
I

1=

dk = ﬁ <Z Xy _' Yi (\/gck_ei — bk—ei) — Z Li

%

(\/gck—Zei - bk—2€i)> ) (47)
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Linear Algebra Summary

=  When the block CG solver is chosen, two additional issues are:
— How to do matrix-vector multiplications faster than O(n?)?
— How to precondition K?

= Regular grid case (K is multi-level Toeplitz):
— Mat-vec: Fast Fourier Transform
— Perform filtering to control the condition number
— Further use a multi-level circulant preconditioner to precondition K

= Scattered points case (on going, ideas):
— Mat-vec: Fast summation methods (e.g., tree code)
— Filtering: Construct a discrete Laplace operator for scattered points
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Sampling

=  Obtaining a sampley:
— Generate a vector x with i.i.d. standard normal entries
— Compute some G such that GG™= K
— Compute y = Gx

= Traditional methods use the Cholesky factor K as G.
= Cholesky is prohibitively expensive in memory and in space for large K.

= We use matrix function techniques to directly compute K¥/2x.
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Function of Matrix Times Vector f(A)b

General techniques

Krylov subspace methods.
— Low rank approximation of A by Q. H,Q,". Then f(A)b = Q,f(H,)Q, "b.
— (+) Extensively studied. (-) Need to store all the vectors; loss of orthogonality.

Polynomial approximation methods.
— Approximate f by a polynomial p. Then f(A)b = p(A)b.
— (+) Many polynomial basis to choose. (-) Polynomial expansion may need quadrature.

Rational approximation.
— Approximate f by rational polynomial p/q. Then f(A)b = q(A)p(A)b.
— (+) Low degree approximation suffices. (-) Need to solve shifted linear systems.

Contour integral.
—  Write f(A) = (2mi)tintegral f(z) (zI-A)* dz. Then compute f(A)b by quadrature.
— (+) and (-) similar to rational approximation. (-) Need design good quadrature points.

68



Function of Matrix Times Vector f(A)b

We consider approximating f by a least squares polynomial

k
F@)=~ @)=Y (f,P)P,(1)
j=0
where the orthnormal basis {P;} can be generated by a three term recursion

ﬁj+1Pj+1 = tl)j —Otij - ﬁjP

» a;=(tP,,P,), B, =normalization

= Vectors v, = P,(A)b are updated using same recursion until sufficiently close to f(A)b
= Matrix free: Only action of A on b is needed to compute v,

=  Computing a, B may need quadrature. We design a method to avoid this.

Idea: Use a spline s to approximate f first.

f(@O)=s(t) =@ (1)
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Function of Matrix Times Vector f(A)b

Benefits of using a spline:
= Quadratures can be computed exactly in each subinterval.

= Alleviate Gibbs phenomenon

15 ‘ ‘ ‘ 15 : : : 15
1r b\o- h th
0.5¢ 1 05f 1 05f
0 o 0
-0.5¢ 1 -05 1 -05f
-1 -04 ] -1 ] -1
13 205 0 0.5 1 T Ny 0 0.5 1T 205 0 05 1
(a) (b) (c)

(a) polynomial approximation, (b) spline, (c) polynomial approximation to spline
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Function of Matrix Times Vector f(A)b

Convergence
[£ (b=, (A, <[ £ -] |,
If -l =0, maxte,y -1,
C (b-a)
-l -0 S22
where

The r-th derivative of spline s is p-Lipschitz with constant C,

a and b are the two end points of the spline (encapsulating spectrum of A)
=t are spline knots

Sampling error: HCOV{KWX ~ @ (K)JC}H2 <|f-al.
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Function of Matrix Times Vector f(A)b

= Numerical results: Standard 2D Laplacian. f(t) = t1/2

100 | | ‘ T 3
_102X1ozgrid§
) ---10%x 10 grid|
107} e
..... 10" x 10" grid]
| ]
) \
5107 \0u |
S N
E RRET
8 . ‘l:;‘; ~~~~~
: B ?
107 |
10~ | ‘ ‘ ‘
0 20 40 ” ; h
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Function of Matrix Times Vector f(A)b

=  Numerical results: Wieland Compact Kernel:

Grid Grid Size o [ K k Iter. Diff. max |¢rr1 — f]
Regular 10°x10° 6.5 3 35.14 48  9.5703x10~ 1 1.2106x1077
Regular 103 %103 125 3 | 24447 | 122 7.9481x10~11  1.9733%x107°
Regular 103 %10 6.5 5 13.14 32 5.6690x10~  4.2998x 1010
Regular 103 %103 125 5 88.23 79  8.3043x10~1  1.2952x107?

Deformed 10%x103 6.5 3 15.96 34  4.5546x10~  4.0252x10~10
Deformed 103x10% 12,5 3 | 107.36 | 87 8.7497x10~' 1.2524x10~?
Deformed 10%x103 6.5 5 6.30 22  5.3848x10~'  3.2586x10~10
Deformed 10°x10% 125 5| 3873 | 54 6.4973x10~  9.4807x10~10
idual: max t) — s(t
Residual: tEA(A) |¢k—|—1( ) ( )| ;
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A

Experimental Results
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Stokes Flow

(a) Pressure field (b) Filtered pressure field in log-scale
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Stokes Flow

Fitted a power-law model

Data

Fitted a

eig(Fisher1)1/2

¢(x;,C)=T(-a/2) C|«|"

Circle

0.1819

5.04e-4

a\=

Rectangle

0.3051

9.80e-4

Boundary

0.7768

2.50e-3

Background

1.5945

8.11e-4
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Conclusion GP

=  State-of-the-art methods use Cholesky to do sampling and solve ML.
— Can probably handle data size up to n = 0(10%) or O(10°).

=  We propose a framework to overcome the Cholesky barrier.
— Use a matrix-free method to do sampling.
— Reformulate maximum likelihood using stochastic approximation.
— Use iterative solver to solve linear systems.
— Use a filtering technique to reduce the condition number.

=  On going work
— Investigating the scaling of parallel FFT for n = O(10°) and larger computations.
— For scattered points, investigating a discrete Laplace operator for filtering.
— Implementing a fast summation method to do mat-vec.
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Conclusions Gradient Enhanced UQ

= Gradient-enhanced uncertainty propagation is a first step to a larger effort in
learning the behavior of complex models by extracting more information from
fewer sample runs.

= Animportant part of PRD and GEUK is Automatic Differentiation; it can be applied
to codes of *industrial* complexity.

=  We have shown that basis choice makes a difference for PRD.

= Gradient-enhanced universal kriging brings combines the best advantages in
sensitivity, regression, and Gaussian processes.

= |t can provide good statistics for nuclear engineering codes with 6-8 samples for
the limited examples we tried.

= More accurate that regression, more efficient than kriging.

=  Future:
— Larger number of parameters
— Approximated the gradients of very large scale codes. ]
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